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Abstract 

The diffuse scattering from single crystals of 
nominally Ni-10 at.% AI, quenched after heat treat- 
ment at 973 K, has been measured with Mo K a  radi- 
ation. The data were analysed for the contributions 
due to short-range order and static atomic displace- 
ments. Consistency of the structural parameters as 
determined by three different methods, the separation 
methods of Georgopoulos-Cohen and Boric-Sparks 
and the least-squares method of Williams, is demon- 
strated for the first time. The variation of the first few 
short-range-order parameters az,,n with the coordina- 
tion shell Iron strongly resembles that of the L12 
superstructure. Employing these parameters to model 
a short-range-ordered computer crystal with 13 104 
atoms, a preference for configurations of the L12 
superstructure type is found, though no Ni3A1 
embryos are observed. The values of Ollm n rapidly 
reach those for a random solid solution. 

1. Introduction 

Nickel base superalloys are technologically important 
because of their favourable mechanical properties at 
temperatures up to about 1200 K. In many of these 
alloys, ordered Ni3 Al-type precipitates (3" phase with 
L12 superstructure), coherent with the 3" matrix, are 
responsible for high mechanical strength by impeding 
dislocation motion. N__ii-Al solid solutions may be seen 
as a prototype of other superalloys that can be 
obtained by a partial substitution of the Ni and A1 
atoms. 

Ordering and decomposition have been studied in 
N___ji-AI alloys as well as in technological alloys by 
various methods, such as small-angle neutron 
scattering (Beddoe, Haasen & Kostorz, 1984), trans- 
mission electron microscopy (GrShlich, Haasen & 
Frommeyer, 1982) and atom-probe field-ion micros- 
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copy (Wendt & Haasen, 1983). Earlier work is found 
in the references just quoted. 

High-angle scattering has been employed to study 
local atomic arrangements in various binary Ni-rich 
alloys, such as Ni-Cr, Ni-Mo, Ni-Fe; for a review 
see Kostorz (1983). One high-angle scattering 
measurement on Ni-12.7 at.% A1 was recently per- 
formed by Epperson & Fiirnrohr (1983). The short- 
range-ordered state quenched in from 1323 K was 
analysed by the method introduced by Boric & Sparks 
(1971). 

In the present study, single crystals of Ni with 
nominally 10 at.% AI were used for an investigation 
of short-range order. As this concentration is still 
within the 3' region, the formation of 3" particles is 
avoided, and the short-range-ordering properties of 
the 3' phase may be investigated. The method of 
Georgopoulos & Cohen (1977), most appropriate for 
the diffuse scattering of X-rays, is employed to analyse 
the data. This method also allows individual atomic 
displacements to be determined. Two other methods, 
the one proposed by Borie& Sparks (1971) and the 
least-squares method suggested by Williams (1972), 
have also been applied in order to evaluate the 
influence of various methods on the resulting struc- 
tural parameters. 

2. Experimental 

A single crystal of Ni with nominally 10at.% AI, 
about 6 cm long and 12 mm in diameter, was grown 
under an argon (5N7) atmosphere in a high-purity 
A1203 crucible by the Bridgman technique; the start- 
ing alloy was prepared from 99.99at.% Ni and 
99-999 at.% A1. The single crystal was homogenized 
in argon for 24h at 1373 K and water quenched. 
Subsequently two slices about 3 mm thick, with a 
surface normal near the [119] direction, were spark 
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cut. The chemical analysis of the two samples yielded 
an AI concentration of 9.5 and 9.8 at.%, respectively. 
Both samples were heat treated at 973 K, sample 1 
(with 9.5at.% AI) for 48h and sample 2 (with 
9.8 at.% A1) for 3354h, and water quenched. To 
reniove any surface damage, the samples were pol- 
ished mechanically and electrochemically. The final 
samples showed a typical mosaicity of 0.7 ° full width 
at half maximum. 

Diffuse X-ray measurements were carried out on a 
four-circle diffractometer at room temperature in 
symmetrical reflection geometry. A sealed Mo tube 
operated at 44mA and 50kV was used as X-ray 
source. The M o K a  radiation (wavelength A= 
0.71069 A) was selected by a singly bent and a doubly 
bent pyrolytic graphite monochromator for sample 1 
and sample 2, respectively. Furthermore, the beam 
divergences were adjusted by slits to allow measure- 
ments of the diffuse intensity to be taken at points 
separated by 0-1 reciprocal-lattice units. To eliminate 
effects due to instabilities of the X-ray source, the 
incident-beam intensity was normalized to the scat- 
tered radiation from a thin Mylar foil, mounted just 
in front of the sample. A fixed point on the sharp tail 
of a Bragg reflection was also measured about every 
2 h to indicate any mechanical/electronic instability 
of the set-up. An ORTEC high-purity Ge detector 
with an energy resolution of better than 400 eV for 
Mo Ka was used to measure the diffuse intensity 
from the sample. Thus, the intensity contributions 
due to fluorescence scattering and the A/2 harmonic 
could be eliminated by a pulse-height analyser. Care 
was taken to include the Compton-scattering contri- 
butions for all scattering angles used. Whereas for 
sample 1 the total X-ray path was in air at atmospheric 
pressure, sample 2 was mounted in an evacuated 
sample chamber covered by a thin Be hemisphere. In 
this case the background, mainly due to air scattering, 
was distinctly reduced. 

The diffuse intensity was measured for each sample 
at about 8000 positions in reciprocal space, with the 
scattering angle 20 ranging from 18 to 90 ° . Typical 
counts were 1.7 x 10  3 to 1"2 x 10  4 in about 330 s. 

After correcting the measured intensities for back- 
ground, surface roughness, absorption by the Be 
hemisphere and partial passing of the beam at the 
sample, absolute intensities were calculated. For 
calibration, two methods were used (see Schwartz & 
Cohen, 1977): firstly, the integrated intensities of the 
111,200 and 220 Bragg reflections of an Al-powder 
compact (Batterman, Chipman & de Marco, 1961) 
and, secondly, the scattering of polystyrene at 
s i n 0 / A = 0 . 5 / ~  -t (Sparks & Boric, 1965) were 
measured. The conversion factors of these two in- 
dependent methods agreed within 5%. The polariza- 
tion factor K of the incident beam was found experi- 
mentally (see e.g. Le Page, Gabe & Calvert, 1979) to 
be K=0 .988  (7) and 0.978 (3) for sample 1 and 

sample 2, respectively. The Compton scattering was 
subtracted using the data of Cromer (1969). Thermal 
diffuse scattering up to third order (TDS,, TDS2 and 
TDS3) was calculated, using the nearest-neighbour 
force constants (Warren, 1969) as obtained from the 
elastic constants of Pottebohm, Neite & Nembach 
(1983). An overall thermal Debye-Waller factor 
(DWF) of exp [-2B(sin 0/A) 2] was determined by 
measuring integrated intensities of various Bragg 
reflections; B = 0"315 (13) A2 was obtained for both 
samples. Finally, the atomic scattering factors of Ni 
and A1 were taken from Doyle & Turner (1968) and 
the dispersion corrections from Cromer & Liberman 
(1970). 

3. Theory 
The diffuse X-ray scattering from a binary ( A - B )  
cubic single crystal has been discussed in various 
papers (Borie & Sparks, 1971; Georgopoulos & 
Cohen, 1977; Williams, 1972). Here we summarize 
the results starting from the presentation of 
Georgopoulos & Cohen (1977). In their formulation, 
the total diffuse intensity Io (k), where k is the scatter- 
ing vector ( k = 4 r r  sin 0/A), - expanding the static 
atomic displacements up to quadratic terms and the 
thermal diffuse scattering up to third order - is given 
by 

I0 (k) = TDS2 (k) + TDS3 (k) 

+ N C A  c~lf'A--f'~12{ lsRo(k) 

+ h~[rlQAA(k) + ~:QxBB(k)] 

+ h2[rlQaA(k) + sCQyB~(k)] 

Be  + h3[r/QAA(k) + ~Q~ (k)] 

+ h2[ ~2 g xAA(k) 4- 2 ~ g  AB(k) + ~2 gxsB(k)] 

+ h~[ ~12gAA(k)4- 2 ~'-~RAn(k)4- ~2 R~B(k)] 

+ h32[ r~2R AA(k) 4. 2 ~/"~g ~ ( k )  4. ~2R ~B(k)] 

+ h~ -2 AA 2~'~SAa(k)+ ~2SxB.B(k)] h2[rl Sxy (k)+ 

+ hi -2 AA h3[r/ Sx~ (k)+ 2~'~S~fl(k)+ ~2SxBfl(k)] 

+ h2h3 [ -2 A A  ~ AB  + ~2SyzO(k)]}, r I Syz (k)+2rl~Syz (k) 

(1) 

where N is the number of atoms in the beam, f~, and 
f~ are the atomic scattering factors (including an 
overall Debye-Waller factor) and CA and ca are the 
atomic fractions of the components. Interatomic vec- 
tors r are expressed by 

r =  l(al/2) + m(a2/2) + n(a3/2), (2) 

where ai are the translation vectors of the cubic unit 
cell and l, m, n are integers defining a particular lattice 
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site. As the scattering-factor ratios 

~q = R e [ f 'A / ( f 'A -- f '~ ) ] , ¢ = R e [ f 'B / ( f 'A -- f 'B ) ] , 

r/'~= Re (f'Af'B*)/If'A--f'BI 2, 

~2=IT'AI2/IT'A--T'BI 2 and ~2=If'BI2/IT'A--f'B[2 (3) 
vary as a function of k, the 25 intensity components 
[IsRo(k), QxAA(k), Q~n(k) etc.], which are all strictly 
periodic functions in reciprocal space, can be separ- 
ated from one another. The Fourier coefficients arm, 
of the short-range-order series 

Isao(k) = ~ ~ Y. Olimn COS "n'hll cos "n'h2m c o s  7rh3n 
! m n 

(4) 
are the Warren-Cowley short-range-order parameters 
(Cowley, 1950): 

= - P I , . J c B ,  (5) Ollm n 1 AB 

where An Plmn is the probability of finding a B-type atom 
at site Iron, if an A-type atom is at site 000, and hi 
are the Miller indices of the reciprocal-lattice point 
considered [k=2, r (h~ ,  h2, h3)/a, lattice param- 
eter a]. 

The Q series in (1) describe the intensities due to 
first-order static displacements. They may be written 
as 

QxAa(k) = --27r Z Z X (CA/CB + Ollmn) 
l m n  

A A  × (xim.) sin 7rhl I cos "a'hz m cos 7rh3 n, (6) 

with similar expressions for the other first-order 
terms. The Fourier coefficients aA (xt~.) describe the 
average static displacements from the average lattice 
in the x direction of an A-type atom near a site lmn 
if an A-type is at site 000. 

The R and S series in (1) contain Fourier 
coefficients that are bilinear in the atomic displace- 
ments. The corresponding terms may be written as 

RxAA(k) = --27r2 E E E (ca/CB + Ollmn) 
l m n  

~AA 2 
X ( ( X l m n ) )  COS 'rrhll c o s  7rh 2 r n  c o s  qrh 3 rl  

(7) 
AA Sxy (k) = 4,r 2 E ~ • ( CA/CB + OLlmn) 

i r o n  

~AA ~AA × ((XZmn)(Ytm,)) sin 7rhl I sin ~'h2 m c o s  "rrh 3 n 

((X0oo)(Ylm.)) describes the corre- where, for example, ~AA ~AA 
lations of static and dynamic displacements, if there 
is an A atom at site lmn and another A atom at site 000. 

If the intensities at 50 to 60 symmetrically related 
positions in reciprocal space are known for each point 
of IsRo(k) within its minimum separation volume 
(see e.g. Matsubara & Cohen, 1983), the various 
intensity components can be obtained everywhere in 
reciprocal space. A Fourier inversion of these terms 
then leads to the structural parameters (e.g. o0,,,). If 

one assumes that the scattering-factor ratios of (3) 
do not vary with the scattering vector k, one can 
incorporate them in the various series, thus reducing 
the number of unknown functions to ten. This formu- 
lation corresponds to that of Boric & Sparks (1971). 
The first-order displacement coefficients Y~m, are now 
given by 

x Yjm,, = --2"a'[ n (  ca/ cB + ,xt,,,,,) 
A A  BB 

X ( X l m n ) - - ~ ( C B / C A + O l l m n ) ( X l m n ) ] .  ( 8 )  

With this separation scheme the intensity components 
must be separated by least-squares fitting (Wu, 
Matsubara & Cohen, 1983) and not a combinatorial 
procedure as proposed by Gragg & Cohen (1971). 
Finally, if one expands the series in the Bode-Sparks  
formulation up to a certain number of significant 
Fourier coefficients, the structural parameters (arm,, 
ytXm, etc.) are directly obtained by a least-squares 
fitting of these parameters to the data. This was first 
demonstrated by Williams (1972). 

4. Results 

For a data analysis according to Georgopoulos & 
Cohen (1977), points in reciprocal space are chosen 
according to symmetry considerations. Thus they will 
not in general cover a contiguous range in k space. 
For an easy visualization of the modulation of the 
diffuse intensity and the various contributions to it, 
Fig. 1 shows the diffuse intensity along an [hh0] 
direction around the 330 position for sample 1. 
Differences between sample 1 and sample 2 are too 
small to be resolved in such a representation. The 
measured diffuse intensity (©) is plotted after subtrac- 
tion of TDS2, TDS3 and Compton scattering (A) and 
finally without TDS1 (x),  too. For comparison, 
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Fig. 1. Diffuse scattering intensity lo(k)  (O) and IsRo(k) (O) of 
sample 1 in the [hh0] direction close to the 330 position. Data 
are also given after subtraction ofTDS2, TDS 3 , Compton scatter- 
ing (A) and of TDSI (x), too. 
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Table 1. Warren-Cowley short-range-order parameters azm,,for the various evaluation methods and the modelled 
coefficients 

Averaged 
Shell Georgopou los  Borie & Williams exper imental  Model led  

index lmn & Cohen  (1977) Sparks (1971) (1972) parameters  parameters  

Sample 1 

0 0 0 1.1926 (81) 1.1866 (166) 1.2171 (43) 1-1988 (162) 1.0000 
1 1 0 -0.0914 (94) -0.0896 (45) -0.0833 (33) -0-0881 (43) -0-0879 (1) 
2 0 0 0.0479 (23) 0.0452 (74) 0.0560 (28) 0.0497 (56) 0.0496 (1) 
2 1 1 -0.0079 (13) -0.0063 (25) 0.0007 (22) -0.0045 (46) -0.0045 (1) 
2 2 0 0-0339 (19) 0.0303 (55) 0.0368 (18) 0.0337 (33) 0.0337 (1) 
3 1 0 -0.0132 (16) -0.0134 (38) -0.0071 (14) -0.0112 (36) -0.0113 (1) 
2 2 2 0.0162 (23) 0.0118 (68) 0.0133 (12) 0.0138 (22) 0.0139 (2) 
3 2 1 -0-0012 (9) -0.0021 (25) -0.0016 (9) -0.0016 (5) -0.0017 (0) 
4 0 0 0.0020 (29) 0.0120 (82) 0.0069 (8) 0-0070 (50) 0.0068 (2) 
3 3 0 0"0003 (19) 0-0010 (51) -0"0019 (6) -0-0002 (15) -0"0002 (2) 
4 1 1 0"0032 (15) 0"0041 (36) 0"0032 (5) 0"0035 (5) 0"0034 (1) 
4 2 0 0"0031 (14) 0"0042 (39) 0.0044 (5) 0"0039 (7) 0"0039 (1) 
3 3 2 -0"0025 (14) -0-0052 (38) -0"0041 (4) -0"0039 (14) -0"0039 (1) 
4 2 2 -0"0016 (13) 0"0003 (33) -0"0010 (4) -0"0008 (11) -0-0008 (1) 

Sample 2 

0 0 0 1.0181 (113) 0.9899(238) 1.1193 (481) 1-0424(680) 1-0000 
1 1 0 -0.0966 (33) -0-0976 (66) -0.0991 (37) -0.0977 (13) -0.0975 (2) 
2 0 0 0.0420 (44) 0.0417 (123) 0-0577 (32) 0.0471 (92) 0-0469 (2) 
2 1 1 0.0013 (17) 0.0046 (33) 0.0046 (25) 0.0035 (19) 0-0035 (1) 
2 2 0 0-0265 (28) 0.0261 (92) 0.0279 (21) 0.0268 (9) 0.0268 (2) 
3 1 0 -0"0102 (23) -0"0072 (51) -0"0030 (17) -0-0068 (36) -0"0069 (1) 
2 2 2 0"0162 (33) 0"0093 (94) 0"0068 (25) 0.0107 (49) 0"0102 (2) 
3 2 1 -0"0000 (15) -0"0029 (34) -0"0044 (11) -0"0024 (22) -0"0025 (1) 
4 0 0 -0"0022 (40) 0.0002 (110) 0"0035 (11) 0.0005 (29) 0"0003 (2) 
3 3 0 -0"0084 (28) -0"0108 (79) -0"0043 (8) -0"0078 (33) -0"0079 (1) 
4 1 1 0.0014 (19) 0"0025 (49) 0"0050 (7) 0"0030 (18) 0-0030 (1) 
4 2 0 0"0057 (20) 0-0081 (63) 0"0102 (5) 0"0080 (23) 0"0080 (1) 
3 3 2 -0"0037 (23) -0-0030 (55) -0"0075 (6) -0"0047 (24) -0"0048 (1) 
4 2 2 -0"0051 (20) -0"0015 (58) -0"0057 (4) -0"0041 (23) -0"0041 (1) 

lsRo(k) (0) is also shown. It can be seen that the 
diffuse X-ray intensity shows its maximum between 
the Bragg reflections indicating short-range ordering. 
The peak is slightly shifted from the L12-superstruc- 
ture position demonstrating the influence of scattering 
contributions due to the static displacements. Tt~e 
separated short-range-order intensity contributes 
about 20% at maximum to the total diffuse intensity. 

For the Williams analysis and the two separation 
methods data of the type x and A, respectively, were 
used. Whereas for the Georgopoulos-Cohen pro- 
cedure the full range of scattering angles up to 90 ° 
was used, its range was reduced to less than 55 ° for 
the analysis with constant scattering-factor 
coefficients and for the direct least-squares fitting. 
This restriction was applied to reduce the influence 
of contributions due to displacement scattering and 
of any variation of the scattering-factor coefficients 
in k space. For the Williams analysis 29 parameters 
were determined (14 short-range-order parameters, 
seven first- and eight second-order displacement par- 
ameters). Because TDS can only be approximately 
calculated from elastic constants - which themselves 
show an uncertainty of 1-4% (Pottebohm, Neite & 
Nembach, 1983) - and because of its quadratic depen- 
dence on these constants, a multiplicative factor for 
TDS~ was introduced as an additional fitting par- 
ameter. This parameter amounted to 1.05 and 1.22 

for sample 1 and sample 2, respectively. For the 
separation methods, no restriction in the number 
of the structural parameters is necessary, and 
TDS~ is included in the second-order displacement 
terms of (1). 

A. Short-range order 

The Warren-Cowley coefficients azmn for both crys- 
tals are given in Table 1. The errors of the solutions 
for the separation methods and for the Williams 
analysis were calculated after Wu, Matsubara & 
Cohen (1983) and from the covariance matrix, respec- 
tively. A second estimate of the error for each 
coefficient is given by the standard deviation of the 
mean values, obtained by arithmetically averaging 
over all three sets of short-range-order coefficients 
(column 4). 

The value of aooo, which should be exactly unity, 
differs by nearly 20% from the theoretical value for 
sample 1. For sample 2, the deviation from unity 
(about 4%) is within the uncertainty of the calibra- 
tion. This illustrates the improvement in data analysis 
obtained by the drastic reduction of background 
scattering by evacuating the sample surroundings. 

The absolute values of a~lO reach 84 and 90% of 
their maximum permitted value of 1 - c~i for sample 
1 and sample 2, respectively. This indicates a strong 
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ordering tendency. A preference for like second- 
nearest neighbours is expressed in positive values for 
the coefficients a2o0. The small values for c~2~ reflect 
the very weak correlations for third-nearest neigh- 
bours. 

The influence of counting statistics on the data 
analysis was studied by measuring sample 2 twice 
under identical conditions. These two complete data 
sets were then analysed identically after 
Georgopoulos & Cohen (1977) (in Table 1, the 
average values are given). The resulting differences 
of the Warren-Cowley parameters are more pro- 
nounced than fluctuations in these parameters due to 
uncertainties of experimental data such as the nor- 
malization factor, DWF etc., but still smaller than the 
ones calculated after Wu, Matsubara & Cohen (1983). 
The observed standard deviations of the mean values, 
however, are of the same magnitude as the calculated 
errors. Therefore, these deviations from the mean 
values can be identified as the actual experimental 
e l r o r s .  

For both samples the Warren-Cowley parameters 
azm,, oscillate in the same way as in a fully ordered 
Ni3A1 crystal (L12 superstructure), as seen in Figs. 
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Fig. 2. Warren-Cowley short-range-order parameters at,,,, as a 
function of the coordination-shell index lmn for the L12 super- 
structure scaled by 0.075 (broken line) and for sample 1 (a) and 
sample 2 (b) with the evaluation methods of Georgopoulos  & 
Cohen (0 ) ,  of Bode & Sparks (&) and of Williams (+). 

2(a) and (b). Short-range-order parameters higher 
than a422, however, showed no significant deviation 
from azm,--0, the value in a random solid solution. 

The isointensity diagram for a (100) plane, recon- 
structed from the short-range-order parameters of the 
three different methods and from the averaged ones, 
is shown in Fig. 3 for sample 1. The agreement 
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(e) 
Fig. 4. (a) to (e) show consecutive (100) planes of the modelled 

sample 1 with O, O, A, A representing AI atoms on the four 
sublattices and with • for any Ni atom. 
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Table 2. Abundance analysis for the first coordination shell 

Sample 1 
(i) Minori ty (AI) around majority (Ni) atoms 

Configuration Configuration 
abundance (%)  abundance (%)  

Configuration Random Quenched Configuration Random Quenched 
c1  30-18 19.98 ClO 1-69 0.68 
C2 37.97 43.79 C l l  1.68 0-66 
C3 4.09 9-00 C12 0.85 0.24 
C4 1.97 4.67 C 13 0.86 0.02 
C5 8.06 13.36 C14 0.85 0-02 
C6 7.85 1.93 C15 0-27 0-00 
C7 0.42 2.15 C16 0.01 0.13 
C8 0.85 2.43 C17 0.03 0.12 
C9 0.28 0.55 C18 0-17 0-13 

(ii) Minori ty  (A1) around minority (AI) atoms 
CI 30.35 82.10 
C2 38.27 17.21 
C3 4.09 0.21 

Sample 2 

(i) Minori ty (AI) around majority (Ni) atoms 
C1 29.01 
C2 37"81 
C3 4"13 
C4 2"10 
C5 8"36 
C6 8"04 
C7 0"41 
C8 0"92 
C9 0"31 

(ii) Minori ty  (Al) around minority (Al) atoms 
C1 28.56 
C2 37.37 
C3 4.14 

17.75 
43"58 
9"40 
4.92 

15"37 
1"32 
2"20 
3"01 
0"87 

87"89 
11 "94 
0"06 

C4 1"77 0"18 
C5 7"63 0"30 
C6 8"30 0"00 

C10 1"77 0"45 
C l l  1"76 0"50 
C12 0-94 0.19 
C13 0"91 0"01 
C14 0"85 0"00 
C 15 0"27 0"00 
C16 0"01 0"12 
C17 0-04 0-12 
C18 0.18 0.07 

C4 1-72 0-03 
C5 7"70 0"06 
C6 8"85 0-03 

between any of the individual intensities Ix and Iy, 
defined by the ratio [~ (Ix - Iy)2/I2] w2, is better than 
6% for sample 1 and 10% for sample 2. The agree- 
ment between the reconstructed intensities of  the 
individual methods and the mean solution is better 
than 4% for sample 1 and 8% for sample 2. The 
agreement is worst between the separation methods 
and the Williams analysis. All three methods, 
however, characterize the short-range-order nature 
rather similarly, as can be seen in Figs. 2 and 3. 

B. Crystal modelling 

A more detailed picture of the local order is 
obtained by a computer simulation as first demon- 
strated by Gehlen & Cohen (1965). In this simulation, 
A and B atoms of  a computer crystal (with the same 
composition as the crystal studied) are interchanged 
without any energy considerations. An interchange is 
only permitted if it improves the agreement with the 
experimental short-range-order parameters. In the 
present study the first 13 averaged Warren-Cowley 
coefficients of  Table 1 were used to construct a com- 
puter crystal corresponding to these coefficients; the 
evaluation was based on a program of Williams 
(1976). The model crystal contained 13 104 atoms and 
was sufficiently large for the observed correlations. 

900 (sample 1) and 1030 (sample 2) interchanges were 
performed to fit the experimental arm, within 2 x 10 -a. 
The resulting modelled parameters are listed in 
column 5 of Table 1. As an illustration, five consecu- 
tive (100) planes of  the computer crystal are shown 
in Fig. 4 for sample 1. Again, the corresponding plot 
for sample 2 shows no significant differences. The 
positions of  A1 atoms on the four different sublattices 
of the f.c.c, lattice are labelled with different symbols; 
the lattice positions occupied by an Ni atom are 
always marked with a dot. In spite of the strong 
ordering tendency expressed by the large negative 
value of a~,o, no indications of  fully ordered particle- 
like regions were found. The encircled volume in Fig. 
4, however, indicates an ordering of the N i  3 Al type. 

A more detailed picture of the modelled structure 
is obtained by the inspection of the 144 distinguish- 
able atomic configurations of the first coordination 
shell (Clapp, 1971 ). The results are presented in Table 
2 for Ni or A1 atoms as central atoms and compared 
with a modelled random array. The nomenclature 
used is illustrated in Fig. 5. It can be seen that over 
99% of the atomic arrangements can be classified in 
one of the first 18 configurations. Compared with a 
random alloy the relative amount increases for those 
configurations where the A1 atoms occupy only one 
f.c.c, sublattice as in the L12 superstructure, and 
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decreases for all configurations which include at least 
one Ai-AI pair as nearest neighbours. The low abun- 
dance of the basic structure element of the NiaAl 
structure (C16) present in the short-range-ordered 
alloy, however, indicates that a model of dispersed 
perfectly ordered domains (Aubauer & Warlimont, 
1974) is not appropriate to describe the present short- 
range-ordered structure. About one-sixth of all 
configurations are consistent with antiphase boun- 
daries of the type (100), with the displacement vector 
within the boundary (C5, C8 and C17). Coordinated 
Al atoms thus occupy positions in more than one 
sublattice, but avoid forming Al-Al nearest-neigh- 
bour pairs. 

12 

1 

Configuration 
(Clapp, 1971) 

C1 
x C2 
x C3 
x C4 

C5 
x x C 6  

x C 7  
C8 
C9 

x x C10 
x x  C l l  
x x C12 
x x C13 
x x C14 
x x C15 

x C16 
C17 

x x C18 

Sites occupied 
by one specific 
type of atom 

6 
6.7 
5,7 
6.12 
6,11 
5,6,7 
5,6,12 
1.7,9 
5.6,11 
4.6.11 
1.5,11 
2.6.11 
1,6.11 
6,10,11 
5,6,7,8 
4,6,7.9 
5.6,8.4 

Fig. 5. Site numbering and nomenclature of configurations as 
introduced by Clapp (1971). x- Configurations consistent with 
the L12 superstructure, xx:  Configurations with at least one 
AI-AI pair as nearest neighbours. 

240  

220 

Borie and S p a r k s  

Georgopoulos and Cohen 

t.~O 

&20 

Fig. 6. Isointensity plot of the first-order displacement scattering 
in 0.1 Laue units for sample 1 with both separation methods. 

Table 3. First-order displacement parameters ytx, for 
the various evaluation methods 

Shell 
index lmn 

Sample 1 

110/101 
200 
211 

112/121 
220/202 
310/301 
103/130 

222 
321/312 
213/231 
132/123 

400 
330/303 

411 
114/141 
420/402 
204/240 
332/323 

233 

Sample 2 

110/101 
200 
211 

112/121 
220/202 
310/301 
103/130 

222 
321/312 
213/231 
132/123 

400 
330/303 

411 
114/141 
420/402 
204/240 
332/323 

233 

Georgopoulos Bode & Williams 
& Cohen (1977) Sparks (1971) (1972) 

0-0454(141) 0.0437 (10) 
-0.0339(246) -0.0384(20) 
-0.0104(199) -0.0094(10) 

0.0018 (78) 0.0026(7) 
0.0215 (107) 0.0220(10) 

-0.0104(115) -0.0077(9) 
-0.0013 (109) -0.0008(10) 
-0.0017 (118) -0.0019 (9) 

0"0019 (78) 0"0026 (6) 
-0.0018 (75) -0.0017 (7) 

0-0007 (80) 0.0009(8) 
-0.0024(255) -0.0049(21) 

0-0064(118) 0.0067 (9) 
-0.0048 (105) -0.0061 (9) 
-0.0014(86) -0.0034(6) 
-0.0041 (109) -0.0046(11) 
-0.0020(108) -0.0038(10) 
-0.0022 (77) -0.0022(7) 
-0.0001 (105) -0.0013 (10) 

0.0471 (2) 
-0-0330(4) 
-0.0061(2) 

0.0042(2) 
0.0247 (2) 

- 0 . 0 0 0 9 ( 2 )  

0 .0029 (2)  

0.0550 (113) 0.0532 (12) 
-0.0252 (237) -0.0238 (23) 
-0.0004 (103) -0.0032 (11) 

0.0080 (77) 0.0077 (8) 
0.0249 (114) 0.0212 (11) 

-0.0090 (122) -0.0095 (11) 
0.0015 (107) -0"0039 (13) 
0"0020 (114) 0"0034 (10) 
0"0037 (73) 0"0028 (7) 
0.0004 (74) -0.0007 (8) 

-0.0008 (77) 0.0000 (10) 
-0.0096 (236) -0.0117 (23) 

0.0092 (115) 0-0082 (12) 
-0.0058 (103) -0.0016 (11) 
-0.0028 (75) -0.0031 (8) 
- 0 - 0 0 2 9  (104)  - 0 . 0 0 3 1  (13)  

- 0 . 0 0 2 8  (105) 0.0011 (12)  

-0.0010 (85) 0.0000 (8) 
0.0021 (107) 0.0034 (11) 

0.0596 (3) 
-0.0311 (6) 
-0.0021 (3) 

0.0078 (2) 
0.0290 (3) 

-0.0057 (3) 
o.oooo (3) 

The analysis of the first coordination shell suggests 
an L12 type of ordering. This finding is further sub- 
stantiated by the results for the octahedral second- 
and the cuboctahedral fourth-neighbour shells, where 
the central atom and the coordinated atoms belong 
to the same sublattice. If one starts with an Al atom 
as central atom, both coordination shells show a 
tendency for the sublattice defined by the central Al 
atom to be occupied by further AI atoms. 

C. Static atomic displacements 

The analysis according to Georgopoulos & Cohen 
(1977) allows one to determine the mean atomic 
displacements for both components separately. 
Although the errors are as large or even larger than 
the values obtained by Fourier inversion of equations 
like (6), it can be concluded that Ni-Ni  pairs undergo 
lattice displacements of about 0-1% with respect to 
the mean lattice parameter, whereas the displace- 
ments between A1-AI pairs are larger, amounting to 
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about 4%. The mean lattice of the alloy is therefore 
mainly determined by the Ni atoms. Because of the 
large value of c~t~o, the determination of ~Xlm n/AI-Ah~ is 
strongly influenced by the error of a~o, which pre- 
vents an interpretation of the A1-A1 nearest-neigh- 
bour distance. 

To compare the mutual agreement of the three 
methods in the evaluation of the first-order-displace- 
ment parameters, ytx~ was calculated after (8) assum- 
ing constant (averaged) scattering-factor ratios (7/)-- 
-0.7258 and (~:)=-1.7258. The values for yt~,~ are 
listed in Table 3 together with the Fourier coefficients 
ytx,,n of the Borie-Sparks and the Williams analyses. 
A good agreement of the corresponding parameters 
among themselves is found for both samples. In Fig. 
6, the total first-order displacement intensity of 
sample 1, reconstructed from yt,,~x of the two separa- 
tion methods, is plotted in a (100) plane around the 
330 position. The asymmetry with respect to the 330 
superstructure position, responsible for the shift of 
the diffuse intensity maximum (Fig. 1), is quite pro- 
nounced. The differences in the first-order-displace- 
ment intensities of the two samples are located near 
the Bragg positions, where sample 2 shows higher 
intensity values. This is just the region where l sRo(k)  
has to be extrapol~ited in order to obtain the minimum 
separation volume. 

5. Discussion 

If one compares sample 1 and sample 2, the largest 
differences in the diffuse scattering intensities are 
found close to the Bragg reflections and in the 
coefficients a00o. Though the latter difference can be 
explained by the reduction of air scattering, the 
differences in the multiplicative factor of TDS~ indi- 
cate still other unseparated intensities. Excess 
intensities in the tails of Bragg reflections seem to be 
decisive. 

In Fig. 3 the ellipsoidal shape of the diffuse short- 
range-order maximum is striking. Similar effects were 
observed in Cu3 Au (Bardhan & Cohen, 1976), Cu3 Pd 
(Ohshima, Watanabe & Harada, 1976) and in Ni-23.5 
at.% Fe (Lefebvre, Bley, Bessi~re, Fayard, Roth & 
Cohen, 1980). The latter authors related this shape 
to the unexpectedly small value of ct211. As seen in 
Fig. 2, this value is also small in the present study. 
It is not clear whether this behaviour is related to 
antiphase boundaries on {100} planes or to the plate- 
like nature of the ordered regions. The results of the 
computer modelling, however, are more compatible 
with the latter feature (see Fig. 4). 

The first-order-displacement parameters from both 
samples are of the same order of magnitude as the 
coefficients of Cu3Au (Bardhan & Cohen, 1976), 
CuaPd (Ohshima, Watanabe & Harada, 1976) and 
Au3Cu (Bessi~re, Lefebvre & Calvayrac, 1983). In 
agreement with the sign of the size effect, the sign of 

the displacement parameters 3't~n of Cu3Au and 
C u  3 Pd show the same and those of Au3Cu show an 
inverse sign sequence in comparison with the first few 
yt~n of the Ni-A1 crystals studied here. 

In the present investigation of a quenched-in state 
of short-range order three evaluation methods have 
been compared successfully for the first time. 
Lefebvre, Bley, Fayard & Roth (1981) analysed 
diffuse neutron scattering data of Fe3Al after the 
Borie-Sparks procedure using the separation accord- 
ing to Gragg & Cohen (1971), and also with the 
Williams method. For both methods, a good agree- 
ment was found for the short-range-order parameters. 
It was concluded that the less laborious Williams 
method will produce reliable results for neutron scat- 
tering data if the displacements are sufficiently small. 
A test of all three methods was tried by Georgopoulos 
& Cohen (1981) who evaluated the diffuse X-ray 
scattering from non-stoichiometric /3'-NiA1. It was 
found that in their case neither the separation pro- 
cedure with constant scattering-factor ratios nor the 
Williams method gave acceptable solutions. In the 
present case, meaningful solutions for the Warren- 
Cowley parameters at,,n and also for the first-order 
displacement coefficients yt~, were obtained with all 
three methods, although the first-order displacement 
parameters are of the same order as for fl'-NiA1. 
Thus, more alloy systems must be studied in sufficient 
detail before a criterion for the validity of the various 
evaluation procedures can be established. 
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Abstract 

Theory applying to difference Fourier syntheses from 
fiber diffraction data is developed, including the 
calculation of expected peak heights and noise levels. 
The signal-to-noise ratio in fiber diffraction difference 
maps is much lower than in crystallography, because 
of the multi-dimensional nature of fiber diffraction 
data, but it is shown by means of examples from 
tobacco mosaic virus that high-order difference syn- 
theses, for example using coefficients analogous to 
crystallographic 6Fobs-5Fca~c, can clearly reveal 
differences between an observed structure and a 
model. 'Omit' maps, calculated from models by omit- 
ting a region under particular scrutiny, are of limited 
use in fiber diffraction, but maps calculated from 
hybrid coefficients derived from both full and partial 
models have some applications. 

Introduction 

Difference syntheses have been widely used in both 
protein and small-molecule crystallography to deter- 

*Present address: ERATO, 5-9-5 Tokodai, Toyosato, Tsukuba 
300-26, Japan. 

0108-7673/87/040533-07501.50 

mine structures related to already known structures, 
and as part of refinement procedures (Blundell & 
Johnson, 1976; Glusker & Trueblood, 1985). 
Although they have fohnd some use in fiber diffrac- 
tion [a number of references are given by Mandelkow, 
Stubbs & Warren (1981)], this use has until now been 
limited by the difficulties peculiar to fiber diffraction 
which arise from the cylindrical averaging of fiber 
diffraction patterns. Difference Fourier maps calcu- 
lated from fiber diffraction data by direct analogy 
with crystallographic difference maps tend to have 
high noise levels and to be biased toward the known 
or model structure, as will be shown below. In favor- 
able cases, modification of the model structure has 
enabled interpretable maps to be calculated (Man- 
delkow, Stubbs & Warren, 1981), but no systematic 
procedure has been available to deal with the general 
case. 

In this paper, we develop the theory of fiber diffrac- 
tion difference Fourier syntheses, and illustrate the 
method with examples that use simulated data sets, 
calculated from an atomic model of tobacco mosaic 
virus (TMV). We also present several alternative, 
semi-empirical syntheses, that have proven effective 
in handling real data. 
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